
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2007; 53:1473–1494
Published online 27 September 2006 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.1372

Edge-based data structures for a symmetric stabilized
finite element method for the incompressible Navier–Stokes

equations with heat transfer

R. A. Kraft1,‡, A. L. G. A. Coutinho1,∗,† and P. A. B. de Sampaio2,§

1Programa de Engenharia Civil—COPPE, Universidade Federal do Rio de Janeiro, CP 68506,
Rio de Janeiro-RJ, 21945-970, Brazil

2Instituto de Engenharia Nuclear—Comissão Nacional de Energia Nuclear,
Rio de Janeiro-RJ, 21945-970, Brazil

SUMMARY

This work presents a new implementation of the De Sampaio–Coutinho formulation (Int. J. Numer. Meth.
Fluids 1999; 29:289–309), a segregated Petrov–Galerkin/generalized least-squares method, for the solution
of the incompressible Navier–Stokes equations with heat transfer. Such a formulation produces symmetric,
positive-definite matrices, allowing the use of a preconditioned conjugate gradient solver for each unknown.
The formulation also intrinsically introduces streamline upwinding by the choice of adequate time steps,
providing a suitable description of convective dominated flows. The code was primarily written using
element-based data structures, making use of parallel/vector techniques and mesh adaptivity. However,
schemes based on edge-based data structures have been introduced with the aim of reducing flop count,
memory demands and indirect addressing. In this work, the De Sampaio–Coutinho formulation has been
re-written considering an edge-based arrangement. The effectiveness of the new scheme was observed
solving some standard test cases, as shown in this paper, with a comparatively high gain in computational
efficiency. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the finite element method, discrete equations can be obtained either from variational principles
or from weighted residual methods. According to De Sampaio in Reference [1], the latter are
mostly used in fluid mechanics as variational principles do not always exist. Apart from this, as
the differential operators are non-self-adjoint, the Galerkin method loses its best approximation
property and other formulations have to be used. Petrov–Galerkin methods, which make use of
weighting functions applied to the residuals that are different from the interpolating functions used
to expand the approximated solution, are used instead in the description of convective-diffusive
phenomena, producing in addition streamline upwinding, providing an adequate description of
convective dominated flows.

According to Löhner [2], in recent years, besides the significant progress on the development of
numerical algorithms for the solution of Navier–Stokes equations, the use of unstructured meshes
have allowed a better discretization of more complex geometries and eased the adaptation of the
mesh to improve the solution. However, such unstructured meshes require the storage of the mesh
connectivity, leading to an increase in the computer memory and the use of indirect addressing to
retrieve nearest neighbour information. This implies that numerical algorithms will run slower on
unstructured grids than on structured ones.

With the aim of reducing float point operations and indirect addressing, schemes based on edge-
based data structures have been introduced, such as in the works by Barth [3], Luo
et al. [4], Peraire et al. [5], and Venkatakrishnan and Mavriplis [6]. Additionally, as presented in
Reference [7], more sophisticated data structures such as stars, super edges and chains have been
developed. Catabriga and Coutinho [8] have shown that element matrices can be disassembled into
their edge contributions, independently of the nature of the problem to be solved. According to
these works, the use of edge-based data structures present significant savings in processing time
for three-dimensional problems when compared with element-based ones. Another advantage of
edge-based data structures pointed out in Reference [4] is its easy implementation, for both two-
and three-dimensional problems, due to its similarity with the one-dimensional scheme, in which
the connectivity is given by the initial and final nodes of the edge. Recently edge-based schemes
have been introduced for incompressible flows, as in Reference [9], where an implicit second-
order accurate monolithic scheme has been used. In that implementation the mass, gradients, and
Laplacian matrices are computed and stored only once at the beginning of the run by using a
standard compressed sparse row (CSR) format. According to the authors, the reduction in the total
CPU time is mostly due to the higher speed with which LHS and RHS are constructed in the
edge-based arrangement if compared with the element-based one.

Particularly in the case of the incompressible Navier–Stokes equations, the De Sampaio–
Coutinho formulation, a segregated Petrov–Galerkin/generalized least-squares method type,
presented here produces symmetric, positive-definite matrices, allowing the use of a precondi-
tioned conjugate gradient solver for each unknown. The formulation also intrinsically introduces
streamline upwinding by the choice of adequate local time steps, providing a suitable description
of convective dominated flows. It is also developed such that C0 class shape functions can be used,
circumventing, this way, the Babuška–Brezzi condition. Another advantage is that the problem is
solved in terms of primitive variables, i.e. pressure, components of velocity and temperature.

As in the original element-based implementation, optimal local time steps are used to advance
the solution, whilst a time interpolation scheme is employed to provide the necessary synchroniza-
tion [10]. The combined local time steps/time-interpolation scheme has shown good time accuracy
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in several applications involving coupled flow and heat transfer [10] and in fluid–structure inter-
action problems [11]. Recently, De Sampaio [12, 13] has shown that the combined use of local
time steps and time-interpolation, in the present context, is equivalent to the use of the Galerkin
least-squares (GLS) method [14, 15], where the local time steps play the role of the stabilization
parameter whilst the interpolation time step plays the role of the time step used to advance the
solution in time. Note also that differently from Soto et al. [9], here the edge coefficients coming
from nodes ij are not different from nodes ji, due to the symmetry of the underlying formulation.

The edge-based version of the De Sampaio–Coutinho formulation here presented preserves all the
essential characteristics of the original element-based version, allowing the use of a preconditioned
conjugate gradient solver in a segregated procedure for each of the variables involved, starting with
the solution of pressure, and then updating velocity and temperature fields. There is only a minor
difference regarding the evaluation of the local time steps. In the element-based implementation
the local time steps are computed elementwise, whilst in this work they are computed elementwise
and then projected to the edges. Because this is only a minor change in the representation of
the local time step field, the differences observed in the computations using the element-based
and the edge-based arrangements are negligible. The present work presents a comparison of both
element-based and edge-based codes showing the effectiveness of the latter.

The choice of the edge-based data structure adoption in this work is reinforced by the results
obtained by Ribeiro and Coutinho [16]. They show that, in a two-dimensional diffusion problem,
with a domain discretized with an unstructured mesh composed of linear triangular elements,
edge-by-edge (EDS) operations are more advantageous than those with other arrangements, such
as element-by-element (EBE), CSR or compressed storage row with non-symmetric implementa-
tion, identified by CSR∗, being only less attractive than CSR∗ when it comes to the number of
indirect addressing operations. However, the computing times for routines involving Matrix–Vector
(Matvec) products are the lowest with EDS and EDS∗ (so written to identify when groups of edges
are used). It is also noticeable that better performances are obtained with EDS and EDS∗ when
no strategy for renumbering nodes in the mesh to improve data locality is used.

The remainder of this article is organized as follows. In the next section, the governing equations
for the incompressible Navier–Stokes equations coupled with heat transfer are presented. Following,
the discrete formulation developed by De Sampaio and Coutinho is shown in Section 3, and in the
sequence, the same formulation is presented in terms of edge-based data arrangement in Section 4.
Numerical examples are then shown in Section 5 and a comparison of results between element-based
and edge-based data structures is presented. Section 6 presents the conclusions of the present work.

2. GOVERNING EQUATIONS

The governing equations are written using the summation convention for a = 1, . . . , nsd and
b= 1, . . . , nsd , in Cartesian coordinates, being nsd the number of space dimensions. Thus, the
incompressible continuity equation, in indicial notation, is given by

�(�0va)

�xa
= 0 (1)

The momentum conservation equation for each Cartesian component is given by

�0

(
�va

�t
+ vb

�va

�xb

)
− ��ab

�xb
+ �p

�xa
+ �0�ga� = 0 (2)

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:1473–1494
DOI: 10.1002/fld



1476 R. A. KRAFT, A. L. G. A. COUTINHO AND P. A. B. de SAMPAIO

and the energy conservation equation is

�0cv

(
��

�t
+ ub

��

�xb

)
+ �qb

�xb
= 0 (3)

where, the viscous stress and the heat flux are written as

�ab = �

(
�va

�xb
+ �vb

�xa

)
(4)

and

qb = −�
��

�xb
(5)

with cv being the specific heat, �, the thermal expansion coefficient, �, the viscosity and �, the
thermal conductivity for the fluid. The fluid density at reference temperature � = 0 is designated
by �0, and va , p and � represent, respectively, the velocity, pressure and temperature fields, and
ga , the Cartesian components of gravity.

Finally, the model is completed by the introduction of boundary and initial conditions, in
which velocity and tractions are prescribed in regions of the boundary �va and �ta , such that
�va ∪ �ta =� and �va ∩ �ta =∅,

va = va(x, t), x∈ �va (6)

(−p�ab + �ab)nb = ta(x, t), x∈ �ta (7)

where �ab is the Kronecker delta and nb, the unit outward normal vector at the boundary.
The boundary conditions for temperature and heat flux are prescribed in the regions �� and �q ,

such that �� ∪�q =� and �� ∩�q =∅,
� = �(x, t), x∈ �� (8)

qbnb = q(x, t), x∈ �q (9)

and pressure boundary conditions and mass flux, which are associated with the mass balance in
the domain, are prescribed in the partitions �p and �G , such that �p ∪ �G = � and �p ∩�G = ∅,

p= p(x, t), x∈ �p (10)

�0vbnb =G(x, t), x∈ �G (11)

As noted in Reference [10], since the incompressible model involves only pressure gradients and
not pressure itself, at least one value of pressure must be prescribed in order to define a unique
pressure field.

3. DE SAMPAIO–COUTINHO FORMULATION

As presented in Reference [10], this finite element formulation is derived from the minimization
of the momentum and energy squared residuals:

S =
∫

�
F̂a F̂a d� (12)
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R =
∫

�
Ê2 d� (13)

where,

F̂a = �0

(
v̂n+1
a − v̂na

�t
+ v̂b

�v̂
n+1/2
a

�xb

)
− ��nab

�xb
+ � p̂n+1/2

�xa
+ �0�ga �̂

n (14)

and,

Ê = �0c

(
�̂n+1 − �̂

n

�t
+ v̂b

��̂n+1/2

�xb

)
+ �qnb

�xb
(15)

The variables v̂a, p̂ and �̂ represent the discretized fields, interpolated by shape functions Ni .
Nodal values for velocity, pressure and temperature are denoted, respectively, by vai , pi and
��. The superscripts n, n + 1 and n + 1/2 stand for the time level and �t is the time step. Viscous
stress, �nab, and heat flux, qnb , evaluated at time level n, are firstly taken as source terms, since their
calculation involves second-order spatial derivatives (while the shape functions used are C0 class).
Such quantities, as indicated ahead, will be evaluated inside the elements, and not along element
interfaces [10].

According to Reference [10], at time level n + 1, the minimization of (12) with respect to va
and after some manipulation leads to

∫
�

[
�0
�t

(
Ni + �t

2
v̂nc

�Ni

�xc

)(
v̂n+1
a + �t

2
v̂nb

�v̂n+1
a

�xb

)
+ �

2

�Ni

�xb

�v̂n+1
a

�xb

]
d�

=
∫

�

[
�0
�t

(
Ni + �t

2
v̂nc

�Ni

�xc

)(
v̂na − �t

2
v̂nb

�v̂na

�xb

)
− �

2

�Ni

�xb

�v̂na

�xb

]
d�

−
∫

�

�Ni

�xa
p̂n+1/2 d� −

∫
�

�t

2
v̂nc

�Ni

�xc

� p̂n+1/2

�xa
d�

+
∫

�ta

Ni ta d� −
∫

�

(
Ni + �t

2
v̂nc

�Ni

�xc

)
�0�ga �̂

n d�

+
∫

�

�t

2
v̂nc

�Ni

�xc

��nab
�xc

d� ∀ free vn+1
ai (16)

minimizing (12) again with respect to p, combining the result with the mass conservation equation
(1) and after some mathematical manipulation the following equation is obtained:

∫
�

�t
�Ni

�xa

� p̂n+1/2

�xa
d� = −

∫
�

�t
�Ni

�xa
�0v̂

n
b
�v̂na

�xb
d�−

∫
�

�0Ni
�v̂na

�xa
d� +

∫
�

�t
�Ni

�xa

��nab
�xb

d�

−
∫

�
�t

�Ni

�xa
�0�ga �̂

n d�−
∫

�G

Ni (G
n+1−G

n
) d� ∀ free pn+1/2

i (17)
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The minimization of (13) with respect to �, also at time level n + 1, and again after some
manipulation, provides:

∫
�

[
�0c

�t

(
Ni + �t

2
v̂nc

�Ni

�xc

)(
�̂n+1 + �t

2
v̂nb

��̂n+1

�xb

)
+ �

2

�Ni

�xb

��̂n+1

�xb

]
d�

=
∫

�

[
�0c

�t

(
Ni + �t

2
v̂nc

�Ni

�xc

)(
�̂n − �t

2
v̂nb

��̂n

�xb

)
− �

2

�Ni

�xb

��̂n

�xb

]
d�

−
∫

�q

Niq d� −
∫

�

�t

2
v̂nc

�Ni

�xc

�qnb
�xb

d� ∀ free �n+1
i (18)

The traction and heat flux boundary conditions given by (7) and (9) are approximated by:∫
�ta

Ni (−p�ab + �ab)nb d�=
∫

�ta

Ni ta d� (19)

∫
�q

Niq
n
b nb d�=

∫
�q

Niq d� (20)

At this point, viscous terms and heat flux must be replaced in Equations (16)–(18) by their
corresponding discretized forms. In terms of discretized velocity and temperature they become:

�̂nab = �

(
�v̂a

�xb
+ �v̂b

�xa

)n

(21)

and,

q̂nb =−�
��̂n

�xb
(22)

By doing so, the equivalence of Equations (16)–(18) with the least-squares method is lost, since
it would be necessary to use of C1 class shape functions. However, the present formulation inherits
from the former the properties of symmetry and positive definiteness.

As stated before, the resulting system of equations is solved in a segregated solution procedure,
in which pressure is computed first and then velocity and temperature fields are updated. Equations
(16)–(18) lead to systems of equations that can be written in matrix form as:

APpn+1/2 = bP (23)

Avx v
n+1
x =bx (24)

Avyv
n+1
y =by (25)

A�h
n+1 =b� (26)

Matrices Ap, Avx , Avy and A� are symmetric positive-definite and allow the use of a Jacobi-
preconditioned conjugate gradient solver for each unknown. The EBEmatrix–vector product needed
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in the iterative solver can be expressed by

Ax=
nelem∑
e=1

Aexe (27)

where nelem stands for the number of elements in the mesh. This multiplication in an EBE scheme
can be summarized in the algorithm below:

do e = 1, nelem
gather pe from p
compute ap=Aep
scatter + add p=p + ap

end do

Another important aspect of the method is that the weighting functions derived from the mini-
mization of (12) and which are applied to Equations (16) and have the streamline upwind Petrov–
Galerkin structure [17]:

Wi = Ni + �t

2
v̂nc

�Ni

�xc
(28)

According to Reference [10], for linear finite triangular elements, an adequate amount of streamline
upwinding is introduced in the momentum balance by choosing the time step as

�t =
[
coth

(
Re

2

)
− 2

Re

]
he

‖vn‖ (29)

with ‖vn‖ being the velocity modulus and he, the characteristic element size, calculated as the
square root of the element area. The element Reynolds number is determined by Re= he‖vn‖�/�.

It can also be noted that when the flow tends to pure convection, that is, Re→ ∞, the time step
in (29) tends to,

�t = he/‖vn‖ (30)

whilst, for pure diffusion, i.e. Re= 0, it is given by

�t = �h2e/6� (31)

Such a time step is also called intrinsic time scale. It must be also noted that in order to introduce
optimal upwinding in the fluid energy, the element Reynolds number in (29) must be replaced by
the element Peclet number, which is given by Pe=RePr, where Pr= �c/� is the Prandtl number.

Since the time step given by (29) varies in space with mesh size, physical properties and
velocities, and, furthermore, if optimal upwinding is to be introduced in both momentum and
energy equations, then distinct intrinsic time scales are to be used. In Reference [10], time steps
to advance the solution and to provide an adequate streamline upwinding are taken as being the
same. Such time steps are determined along the loop for the segregated solution of each degree
of freedom, for each node, which implies that different values are obtained. Therefore, in order to
allow each degree of freedom to advance in time according to its own local time step while results
are outputted at fixed times, a procedure involving freezing ‘inactive’ variables, treating them as
boundary conditions and solving ‘active’ equations and interpolating results for the desired output
time is adopted.
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As an alternative procedure, the use of a unique time step for the mesh is proposed in References
[12, 13], with adjustments to the equations of pressure and momentum such as to embed local
time step and the synchronization phase mentioned above. Local time steps are used in this
new formulation only with stabilization purposes and the algorithm turns out to be more easily
implemented.

4. THE EDGE-BASED SCHEME

Equations (16) and (17) can be discretized using finite elements and matrix–vector operations can
be performed in a standard EBE scheme, as indicated in Reference [10]. In the present work, data
is arranged such that operations involving the matrix–vector multiplication and RHS evaluation
are performed EDS.

Edge matrices are written considering the contributions of the elements adjacent to the edge
under consideration, as indicated in Figure 1. The resulting scheme showing how an element matrix
for a linear triangular element with one degree of freedom per node can be written in terms of its
edges contributions is shown below:⎡

⎢⎣
⊗ ⊗ ⊗
⊗ ⊗ ⊗
⊗ ⊗ ⊗

⎤
⎥⎦

︸ ︷︷ ︸
Element e

=
⎡
⎢⎣

⊗ ⊗ 0

⊗ ⊗ 0

0 0 0

⎤
⎥⎦

︸ ︷︷ ︸
Edge i j

+
⎡
⎢⎣
0 0 0

0 ⊗ ⊗
0 ⊗ ⊗

⎤
⎥⎦

︸ ︷︷ ︸
Edge jk

+
⎡
⎢⎣

⊗ 0 ⊗
0 0 0

⊗ 0 ⊗

⎤
⎥⎦

︸ ︷︷ ︸
Edge ki

(32)

and thus, from (32), the matrix corresponding to the edge s can be written in a schematic way as[⊗ ⊗
⊗ ⊗

]
︸ ︷︷ ︸

Edge s

=
[⊕ ⊕

⊕ ⊕

]
︸ ︷︷ ︸

Edge e

+
[⊕ ⊕

⊕ ⊕

]
︸ ︷︷ ︸

Edge f

(33)

All matrices involved are then written in terms of edge data aiming to allow that a code based
only on the edge information is written.

Figure 1. Elements e and f adjacent to edge s.
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In matrix notation, the equation of pressure (17) can be expressed as

TDDpn+1 = −�0TBxvnx − �0
�t

TAxvnx − �0TByvny − �0
�t

TAyvny

− �0gxTA
T
x h

n − �0gyTA
T
yh

n—boundary terms (34)

In our formulations, elements e and f are considered as having their connectivity given by local
nodes 1–2–3 and 1–4–2, respectively. In order to keep consistency, shape functions derivatives for
each element are written as

Be = �Ne
i

�xa
=

⎡
⎢⎢⎣

�Ni

�x
�Ni

�y

⎤
⎥⎥⎦= 1

2Ae
el

[
b1 b2 b3

c1 c2 c3

]
(35)

and,

B f = �N f
i

�xa
=

⎡
⎢⎢⎣

�Ni

�x
�Ni

�y

⎤
⎥⎥⎦= 1

2A f
el

[
b5 b4 b6

c5 c4 c6

]
(36)

where the area of each element is

Ae
el =

a1 + a2 + a3
2

(37)

A f
el =

a4 + a5 + a6
2

(38)

and,
a1 = x2y3 − x3y2

b1 = y2 − y3

c1 = x3 − x2

(39)

a2 = x3y1 − x1y3

b2 = y3 − y1

c2 = x1 − x3

(40)

a3 = x1y2 − x2y1

b3 = y1 − y2

c3 = x2 − x1

(41)

In the case where there are two elements adjacent to edge s, the coefficients relative to this
second element are determined by

a4 = x2y1 − x1y2

b4 = y2 − y1

c4 = x1 − x2

(42)
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a5 = x4y2 − x2y4

b5 = y4 − y2

c5 = x2 − x4

(43)

a6 = x1y4 − x4y1

b6 = y1 − y4

c6 = x4 − x1

(44)

Considering the matrix arrangement in (33), the pressure matrix on the left-hand side of (34) is
written as

TDDi j =TDDe
i j + TDD f

i j =
[−Ti j Ti j

Ti j −Ti j

]
(45)

In the calculations, a loop is carried out along the edges, for the current edge, in terms of local
nodal numbering, we can write,

TDD12 =TDDe
12 + TDD f

12 =
[−T12 T12

T12 −T12

]
(46)

where the coefficient T12 is calculated by

T12 = T e
12 + T f

12 = b1b2 + c1c2
4Ae

el
+ b5b6 + c5c6

4A f
el

(47)

For the matrices on the right-hand side of (34), due to the non-symmetry of the obtained matrices,
the following approximations have been made:

Ax = 1

6

⎡
⎢⎣
b1 b2 b3

b1 b2 b3

b1 b2 b3

⎤
⎥⎦= 1

6

⎡
⎢⎢⎢⎢⎢⎣

b1
2

b2 0

b1
b2
2

0

0 0 0

⎤
⎥⎥⎥⎥⎥⎦+ 1

6

⎡
⎢⎢⎢⎢⎢⎣

b1
2

0 b3

0 0 0

b1 0
b3
2

⎤
⎥⎥⎥⎥⎥⎦+ 1

6

⎡
⎢⎢⎢⎢⎢⎣
0 0 0

0
b2
2

b3

0 b2
b3
2

⎤
⎥⎥⎥⎥⎥⎦ (48)

TAx = 1

6

⎡
⎢⎢⎣
b1 + b5

2
b2 + b6

b1 + b5
b2 + b6

2

⎤
⎥⎥⎦ (49)

TAy = 1

6

⎡
⎢⎣
c1 + c5

2
c2 + c6

c1 + c5
c2 + c6

2

⎤
⎥⎦ (50)

TBx = 1

12Ae
el

[
b1(b1(u1+u2+u3)+c1(v1+v2+v3))/2 b1(b2(u1+u2+u3)+c2(v1+v2+v3))

b2(b1(u1+u2+u3)+c1(v1+v2+v3)) b2(b2(u1+u2+u3)+c2(v1+v2+v3))/2

]
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+ 1

12A f
el

[
b5(b5(u1+u2+u4)+c5(v1+v2+v4))/2 b5(b6(u1+u2+u4)+c6(v1+v2+v4))

b6(b5(u1+u2+u4)+c5(v1+v2+v4)) b6(b6(u1+u2+u4)+c6(v1+v2+v4))/2

]

(51)

TBy = 1

12Ae
el

[
c1(b1(u1+u2+u3)+c1(v1+v2+v3))/2 c1(b2(u1+u2+u3)+c2(v1+v2+v3))

c2(b1(u1+u2+u3)+c1(v1+v2+v3)) c2(b2(u1+u2+u3)+c2(v1+v2+v3))/2

]

l+ 1

12A f
el

[
c5(b5(u1+u2+u4)+c5(v1+v2+v4))/2 c5(b6(u1+u2+u4)+c6(v1+v2+v4))

c6(b5(u1+u2+u4)+c5(v1+v2+v4)) c6(b6(u1+u2+u4)+c6(v1+v2+v4))/2

]

(52)

The second term at the right side of (51) and (52) is considered only if element f , with local
connectivity 1–4–2, exists. In the case of velocity equations, (16) can be written in matrix form as[

�0
�t

TM + �0
2

(TCC + TCCT) + �0
2

�t

2
TEE + �

2
TDD

]
vn+1
a

=
(

�0
�t

TM − �0
2

(TCC − TCCT) − �0�t

4
TEE − �

2
TDD

)
vna

−
(
TAa + �t

2
TBT

a

)
pn+1/2

− �0�ga

(
TM + �t

2
TCCT

)
hn—boundary terms (53)

Similarly to the equations of pressure, the matrices on the left-hand side of (53) are symmetric
and can be calculated accordingly to (32) and (33) by

TM= Ae
el

12

[
1 1

1 1

]
(54)

TCC= 1

24

⎡
⎢⎢⎣
b1(2u1 + u2 + u3) + c1(2v1 + v2 + v3)

2
b2(2u1+u2+u3)+c2(2v1+v2+v3)

b1(u1 + 2u2 + u3) + c1(v1 + 2v2 + v3)
b2(u1+2u2+u3)+c2(v1+2v2+v3)

2

⎤
⎥⎥⎦
(55)

and, if element f exists, the coefficients relative to it must be added to each matrix,

TM=TM + A f
el

12

[
1 1

1 1

]
(56)
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TCC=TCC + 1

24

⎡
⎢⎢⎣
b5(2u1+u2+u4)+c5(2v1+v2+v4)

2
b6(2u1+u2+u4)+c6(2v1+v2+v4)

b5(u1+2u2+u4)+c5(v1+2v2+v4)
b6(u1+2u2+u4)+c6(v1+2v2+v4)

2

⎤
⎥⎥⎦

(57)

It must be noted that, despite (57) is not symmetric, when summed up to its transpose on the
LHS of (53), symmetric matrix is produced and the conjugate gradient solving strategy can be kept.

Matrix TEE can be written as

TEE=TEEe + TEE f =
[−TEE12 TEE12

TEE12 −TEE12

]
(58)

where the coefficient TEE12 is obtained from

TEE12 = (u1b1 + v1c1)

48Ae
el

[b2(2u1 + u2 + u3) + c2(2v1 + v2 + v3)]

+ (u2b1 + v2c1)

48Ae
el

[b2(u1 + 2u2 + u3) + c2(v1 + 2v2 + v3)]

+ (u3b1 + v3c1)

48Ae
el

[b2(u1 + u2 + 2u3) + c2(v1 + v2 + 2v3)] (59)

and, if element f exists, the following must be added to (59)

TEE12 = TEE12 + (u1b5 + v1c5)

48A f
el

[b6(2u1 + u2 + u4) + c6(2v1 + v2 + v4)]

+ (u2b5 + v2c5)

48A f
el

[b6(u1 + 2u2 + u4) + c6(v1 + 2v2 + v4)]

+ (u4b5 + v4c5)

48A f
el

[b6(u1 + u2 + 2u4) + c6(v1 + v2 + 2v4)] (60)

Matrices on the right-hand side of (53) have already been determined, having just to be noted
that in TAa and TBa the subscript a stands for the Cartesian component of velocity being evaluated.
In edge terms, the temperature equation (18) can be written as

[
�0cTM + �0c�t

2
(TCC + TCCT) + �0c�t

2

4
TEE + ��t

2
TDD

]
hn+1

=
[
�0cTM − �0c�t

2
(TCC − TCCT) − �0c�t

2

4
TEE

−�

2
TDD

]
hn—boundary terms (61)
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where all matrices indicated have already been defined in the previous items. Once the matrices
involved are defined, the strategy to solve the system of resulting equations is discussed.

Time steps to advance the solution and to provide an adequate streamline upwinding are taken
here as in Reference [10] and a similar procedure for treating ‘active’ and ‘inactive’ variables is
adopted for the solution advance in time. Soto et al. [9] describe the determination of an intrinsic
time used in the stabilization of the formulation there presented which is different from the time
step used to advance the solution in the simulation. Nodal evaluations are made to determine the
time to stabilize convective terms and edge evaluations are made to determine the adequate time
to provide stabilization to the incompressible continuity terms.

Though other procedures are possible, in the present work, if there are two elements adjacent
to an edge, the time step associated with it is determined as being the average of the time steps
evaluated in the barycentre of each element separately, as follows:

�t = �te + �t f

2
(62)

with element time steps calculated as shown in Section 3.
Since matrices obtained on the left-hand side of all systems of equations are symmetric positive

definite, an EDS procedure using a Jacobi-preconditioned conjugate gradient solver is adopted. To
allow parallelization of calculations in cache-based shared memory systems, the mesh is coloured as
described in Reference [10]. Although important, no edge or node reordering as used in References
[16, 18] to improve data locality is considered.

As mentioned before, a segregated method of solution is adopted, where systems of equations
as summarized in Equations (23)–(26) are obtained. The matrix–vector product in the edge-based
arrangement is performed according to

Ax=
nedges∑
s=1

Asxs (63)

where nedges is the number of edges in the mesh. Calculations are then performed similarly to the
EBE scheme.

Comparing the operations involved in the EBE matrix–vector product algorithm and the EDS
one, in two-dimensional problems, since we are calculating 4 degrees of freedom per node and as
the number of edges in unstructured meshes tends to be 1.5 times the number of elements in the
mesh, we arrive to the number of floating point operations (flop) and indirect addressing (I/A)

estimates in Table I.
From the analysis of the data in Table I, it is possible to compare how the edge-based data

arrangement can contribute to diminish computing time.

Table I. Estimate of indirect addressing and number of floating point operations
in the EBE and EDS arrangements.

Parameter Element-by-element (EBE) Edge-by-edge (EDS)

I/A 4 ∗ 9 ∗ nelem = 36 ∗ nelem 4 ∗ 6 ∗ 1.5 ∗ nelem = 36 ∗ nelem
Flop 4 ∗ 18 ∗ nelem = 72 ∗ nelem 4 ∗ 8 ∗ 1.5 ∗ nelem = 48 ∗ nelem
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Table II. Memory demand comparison in the Matvec product.

Data structure With symmetry Symmetry + conservation

Element-by-element 24 ∗ nelem 21 ∗ nelem
Edge-by-edge 12 ∗ 1.5 ∗ nelem = 18 ∗ nelem 10 ∗ 1.5 ∗ nelem = 15 ∗ nelem

Though this work does not treat three-dimensional problems, it is worth to notice that since an
edge incidence is always the same in both two- and three-dimensional domains, the algorithm for
the matrix–vector product is therefore always the same, involving the same number of indirect
addressing and floating point operations. That means that the gains in three-dimensional problems
are potentially even bigger.

Concerning memory use, taking into consideration the operations involved in the calculation of
coefficients of the matrices on the left-hand side of equations for pressure, velocities and temperature
for both edge and element-based arrangements, it is possible to summarize the memory demand
for each arrangement considering the whole mesh as shown in Table II.

In this table we computed memory positions using the property of symmetry only and symmetry
associated with the conservation property of the shape-functions derivatives [2], in order to reduce
the positions storage to a minimum.

5. NUMERICAL EXAMPLES

Here results for some problems using both element-based and edge-based data arrangements are
shown. For convenience, the governing equations are written in non-dimensional form. The relation-
ship between dimensional and non-dimensional variables is defined by x ′

a = x ′
a/L; t

′ = �t/�oL
2;

v′
a = �ova L/�; �′ = �/�� and p′ = �o pL

2/�2, being �� and L , respectively, the reference temper-
ature difference and the length scale for the problem under consideration. Thus, Equations (1)–(3)
are rewritten as

�v′
a

�x ′
a

= 0 (64)

�v′
a

�t ′
+ v′

b
�v′

a

�x ′
b

− �
�xb

(
�v′

a

�x ′
b

+ �v′
b

�x ′
a

)
+ �p′

�x ′
a

+ Gr	a�
′ = 0 (65)

Pr

(
��′

�t ′
+ v′

b
��′

�x ′
b

)
− �

�x ′
b

(
��′

�x ′
b

)
= 0 (66)

where
	a = ga

‖g‖ (67)

being the Grashof and Prandtl numbers calculated as

Gr = �20�‖g‖��L3

�2
(68)

Pr= c�

�
(69)
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Next, three examples involving free and forced convection are shown. In the simulations
performed, a single processor computer using Athlon XP 3000+, with 1 Gb DDR 400 MHz
memory and OS Windows 2000 has been used.

5.1. Thermal stratification in a square cavity

In this example, the fluid inside a square cavity is initially at rest and under thermal equilibrium,
when a sudden constant temperature difference is applied and kept along two opposite vertical
walls. Temperature on the left wall is increased by 0.5��, while the temperature on the right is
decreased by the same amount. The simulation is carried out during the time interval t ′ = 0–5.0,
considering the product GrPr= 104 and Pr= 0.72.

The domain is discretized by means of a fixed, unstructured mesh containing 7477 nodes and
14 632 elements. The number of edges in the mesh is 22 108. Mesh and boundary conditions are
shown in Figure 2.

Results for temperature distribution and velocity field at the end of the simulation are shown in
Figures 3 and 4. It can be noticed that the temperature distribution shown at Figure 3 presents a
similar pattern to results shown in Reference [10], though the fluid properties are slightly different
there and an adaptive mesh has been used.

Table III shows that the number of floating point operations performed with the EDS arrange-
ment is 67.15% of the one with EBE and memory demand, 71.99%. Though the number of indirect
addressing operations is 1.064 times bigger with EDS, it can be noted that EDS is much more

Figure 2. Mesh and boundary conditions for the thermal stratification problem in a square cavity.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:1473–1494
DOI: 10.1002/fld



1488 R. A. KRAFT, A. L. G. A. COUTINHO AND P. A. B. de SAMPAIO

Figure 3. Temperature distribution at t ′ = 5.0.

Figure 4. Velocity field at t ′ = 5.0.
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Table III. Element-by-element and edge-by-edge performance for the thermal
stratification problem in a square cavity.

Data arrangement Element-by-element Edge-by-edge

Number of time steps 16 351 16 351
CPU time (s) 44 975.859 16 564.000
Memory demand (Mwords) 0.307 0.221
Floating point operations (Mflop) 1.0535 0.7074
I/A (∗10E + 6) 0.5268 0.5306

Figure 5. Mesh and boundary conditions for the lid-driven cavity problem.

advantageous, with the time required to reach the end of the simulation being 36.83% of the time
using EBE routines with the same number of time steps.

5.2. Lid-driven cavity

In the lid-driven cavity flow problem, a fixed mesh containing 1681 nodes, 3200 elements and 4880
edges is used. Non-dimensional variables have been used here again. To the top of the domain, a
square cavity with length L ′ = 1, u′ = 1 and v′ = 0 velocity components have been applied, and
along the other faces, null velocity components, u′ = v′ = 0. Figure 5 shows mesh and boundary
conditions for the problem. The simulation was carried out in the time interval t ′ = 0–5, considering
Re= 1000.
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Figure 6. Pressure field at t ′ = 5.

Figure 7. Velocity field at t ′ = 5.
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Table IV. Element-by-element and edge-by-edge performance for the
lid-driven cavity problem.

Data arrangement Element-by-element Edge-by-edge

Number of time steps 400 411
CPU time (s) 196.969 145.172
Memory demand (Mwords) 0.0672 0.0488
Floating point operations (Mflop) 0.240 0.156
I/A (∗10E + 6) 0.115 0.117

Figure 8. Mesh and boundary conditions for the backward facing step problem.

Table V. Element-by-element and edge-by-edge performance for the backward
facing step problem—Re= 250.

Data arrangement Element-by-element Edge-by-edge

Number of time steps 132 129
CPU time (s) 803.297 438.891
Memory demand (Mwords) 0.294 0.2144
Floating point operations (Mflop) 1.050 0.6861
I/A (∗10E + 6) 0.5040 0.5146

Figures 6 and 7 present pressure and velocity fields for t ′ = 5.0. Given that at t ′ = 5.0 results
have reached stationary solution, it is possible to compare them to Reference [19] and conclude
that they are in good agreement with results shown for the same problem at Re= 1000.

Table IV shows a comparison between performances with EBE and EDS strategies.
Table IV allows us to see that memory demand with the EDS solution is 72.61% of the one

with EBE and number of floating point operations is 65.00% of the one with EBE while indirect
addressing operations are 1.74% bigger with EDS. It can be noted that EDS requires a larger
number of time steps than the EBE solution. This is due to the fact that time steps are calculated
differently in each arrangement. Again, the time required for the simulation is smaller with EDS,
being 73.70% of the time with EBE.

5.3. Backward facing step

The third example shows the backward facing step problem. It has been used a fixed structured
mesh with 7421 nodes and 14 000 elements, resulting in 21 440 edges. The simulation covered
the time interval between t ′ = 0 and 5. Reynolds number was assumed 250. Mesh and boundary
conditions are shown in Figure 8. Table V shows a comparison between performances using EBE
and EDS.
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Figure 9. Pressure distribution at t ′ = 5.

Figure 10. Detail for velocity field at t ′ = 5.

Figures 9 and 10 show pressure and velocity fields at the end of the simulation. Here again,
t ′ = 5 represents a time when stationary results are obtained, allowing us to compare and conclude
that the obtained results are comparable to the ones found in Reference [19], considering vortices
positions and lengths.

In Table V we can see that memory demand with the EDS arrangement is 72.93% of the one
with EBE. The number of floating point operations with EDS is 65.34% of the one with EBE and,
again, the number of indirect addressing operations with EDS is larger than with EBE by 2.10%.
For this problem, again because of the differences in the calculation of the time advance in each
strategy, the number of time steps with EDS was smaller than with EBE. The time consumed to
reach the end of the simulation with EDS was 54.64% of the one with EBE.

6. CONCLUDING REMARKS

Results show that the use of the De Sampaio–Coutinho formulation associated with an edge-based
data arrangement provides an important gain in computing time for the finite element solution of the
incompressible Navier–Stokes equations coupled with heat transfer. Results have been compared
with the ones obtained with an element-based code.

Numerical comparisons show that results obtained with both data arrangements are virtually the
same in all examples. Practically negligible differences (of the order of less than 5% in mixed and
convection-forced problems, and 0% in free-convection problems) are observed due to the use of
local time steps which are calculated for elements as shown in Section 3 and projected for edges as
in Section 4. This procedure may cause the time step to be different for the same degree of freedom
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in each of the data arrangements used. This is observed in both transient and stationary solutions.
Time-accurate solutions with local time steps in transient solutions are obtained as demonstrated
in Reference [20].

Though a larger number of indirect addressing operations have been performed with a reduced
number of floating-point operations, when compared with the element-based scheme, the edge
based arrangement shows still more advantages than the former, requiring less memory and a
smaller number of floating point operations, as shown in the examples and predicted in Tables I
and II.

Also, ratifying our choice concerning data arrangement, considering the analyses performed
in References [16, 18], it is possible to conclude that the best strategy for data arrangement has
been adopted to solve two-dimensional problems governed by the formulation here presented. We
remark that better performances may be achieved if we consider the edge and node reordering
techniques given in Reference [18].

The present formulation associated with edge-based data arrangements has great potential to be
extended to 3D problems. Future implementations include mesh adaptation, use of special edge
arrangements and adoption of a unique time step to advance solution [12], besides data locality
improvements when suitable, as shown in References [16, 18].
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